Abstract.To elucidate the kinetic properties of the Arabidopsis H + /sucrose cotransporter, SUC1, with respect to transmembrane voltage and ligand concentrations, the transport system was heterologously expressed in Xenopus laevis oocytes. decreased as a function of the external H + concentration. Eight six-state carrier models-which comprised the four possible permutations of intracellular and extracellular ligand binding order, each with charge translocation on the sugar-loaded or -unloaded forms of the carrier-were analyzed algebraically with respect to their competence to account for the ensemble of kinetic observations. Of these, two models (first-on, first-off and last-on, first-off with respect to sucrose binding as it passes from outside to inside the cell and with charge translocation on the loaded form of the carrier) exhibit sufficient kinetic flexibility to describe the observations. Combining these two, a single model emerges in which the binding on the external side can be random, but it can only be ordered on the inside, with the sugar dissociating before the proton.