We have previously constructed an engineered anti-diabetic fusion protein using glucagon-like peptide-1 and the globular domain of adiponectin. Herein, we evaluated the therapeutic effects of this fusion protein (GAD) on high-fat diet (HFD)-fed ApoE(-/-) mice. The lipid-lowering effect of GAD was determined in C57BL/6 mice using a lipid tolerance test. The effects of GAD on HFD-induced glucose intolerance, atherosclerosis, and hepatic steatosis were evaluated in HFD-fed ApoE(-/-) mice using glucose tolerance test, histological examinations and real-time quantitative PCR. The anti-inflammation activity of GAD was assessed in vitro on macrophages. GAD improved lipid metabolism in C57BL/6 mice. GAD treatment alleviated glucose intolerance, reduced blood lipid level, and attenuated atherosclerotic lesion in HFD-fed ApoE(-/-) mice, which was associated with a repressed macrophage infiltration in the vessel wall. GAD treatment also blocked hepatic macrophage infiltration and prevented hepatic inflammation. GAD suppressed lipopolysaccharide-triggered inflammation responses on macrophages, which can be abolished by H89, an inhibitor of protein kinase A. These findings demonstrate that GAD is able to generate a variety of metabolic benefits in HFD-fed ApoE(-/-) mice and indicate that this engineered fusion protein is a promising lead structure for anti-atherosclerosis drug discovery.