A broad working definition of structural proteomics (SP) is that it is the process of the high-throughput characterization of the three-dimensional structures of biological macromolecules. Recently, the process for protein structure determination has become highly automated and SP platforms have been established around the globe, utilizing X-ray crystallography as a tool. Although protein structures often provide clues about the biological function of a target, once the three-dimensional structures have been determined, bioinformatics and proteomics-driven strategies can be employed to derive their biological activities and physiological roles. This article reviews the current status of SP methods for the structure determination pipeline, including target selection, isolation, expression, purification, crystallization, diffraction data collection, structure solution, refinement and functional annotation.