PhoB is a signal transduction response regulator that activates nearly 40 genes in phosphate depletion conditions in E. coli and closely related bacteria. The structure of the PhoB effector domain in complex with its target DNA sequence, or pho box, reveals a novel tandem arrangement in which several monomers bind head to tail to successive 11-base pair direct-repeat sequences, coating one face of a smoothly bent double helix. The protein has a winged helix fold in which the DNA recognition elements comprise helix alpha 3, penetrating the major groove, and a beta hairpin wing interacting with a compressed minor groove via Arg219, tightly sandwiched between the DNA sugar backbones. The transactivation loops protrude laterally in an appropriate orientation to interact with the RNA polymerase sigma(70) subunit, which triggers transcription initiation.
During viral replication, herpesviruses package their DNA into the procapsid by means of the terminase protein complex. In human cytomegalovirus (herpesvirus 5), the terminase is composed of subunits UL89 and UL56. UL89 cleaves the long DNA concatemers into unit-length genomes of appropriate length for encapsidation. We used ESPRIT, a high-throughput screening method, to identify a soluble purifiable fragment of UL89 from a library of 18,432 randomly truncated
ul89
DNA constructs. The purified protein was crystallized and its three-dimensional structure was solved. This protein corresponds to the key nuclease domain of the terminase and shows an RNase H/integrase-like fold. We demonstrate that UL89-C has the capacity to process the DNA and that this function is dependent on Mn
2+
ions, two of which are located at the active site pocket. We also show that the nuclease function can be inactivated by raltegravir, a recently approved anti-AIDS drug that targets the HIV integrase.
Three point turn: A metallosupramolecular helicate with trigonal‐antiprismatic geometry fits perfectly into the central hydrophobic cavity of a three‐way DNA junction allowing a new mode of DNA recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.