PhoB is a signal transduction response regulator that activates nearly 40 genes in phosphate depletion conditions in E. coli and closely related bacteria. The structure of the PhoB effector domain in complex with its target DNA sequence, or pho box, reveals a novel tandem arrangement in which several monomers bind head to tail to successive 11-base pair direct-repeat sequences, coating one face of a smoothly bent double helix. The protein has a winged helix fold in which the DNA recognition elements comprise helix alpha 3, penetrating the major groove, and a beta hairpin wing interacting with a compressed minor groove via Arg219, tightly sandwiched between the DNA sugar backbones. The transactivation loops protrude laterally in an appropriate orientation to interact with the RNA polymerase sigma(70) subunit, which triggers transcription initiation.
Human mitochondrial transcription factor A, TFAM, is essential for mitochondrial DNA packaging and maintenance and also has a crucial role in transcription. Crystallographic analysis of TFAM in complex with an oligonucleotide containing the mitochondrial light strand promoter (LSP) revealed two high-mobility group (HMG) protein domains that, through different DNA recognition properties, intercalate residues at two inverted DNA motifs. This induced an overall DNA bend of ~180°, stabilized by the interdomain linker. This U-turn allows the TFAM C-terminal tail, which recruits the transcription machinery, to approach the initiation site, despite contacting a distant DNA sequence. We also ascertained that structured protein regions contacting DNA in the crystal were highly flexible in solution in the absence of DNA. Our data suggest that TFAM bends LSP to create an optimal DNA arrangement for transcriptional initiation while facilitating DNA compaction elsewhere in the genome.
Gephyrin is a bi-functional modular protein involved in molybdenum cofactor biosynthesis and in postsynaptic clustering of inhibitory glycine receptors (GlyRs). Here, we show that full-length gephyrin is a trimer and that its proteolysis in vitro causes the spontaneous dimerization of its C-terminal region (gephyrin-E), which binds a GlyR b-subunit-derived peptide with high and low affinity. The crystal structure of the tetra-domain gephyrin-E in complex with the b-peptide bound to domain IV indicates how membrane-embedded GlyRs may interact with subsynaptic gephyrin. In vitro, trimeric full-length gephyrin forms a network upon lowering the pH, and this process can be reversed to produce stable full-length dimeric gephyrin. Our data suggest a mechanism by which induced conformational transitions of trimeric gephyrin may generate a reversible postsynaptic scaffold for GlyR recruitment, which allows for dynamic receptor movement in and out of postsynaptic GlyR clusters, and thus for synaptic plasticity.
During viral replication, herpesviruses package their DNA into the procapsid by means of the terminase protein complex. In human cytomegalovirus (herpesvirus 5), the terminase is composed of subunits UL89 and UL56. UL89 cleaves the long DNA concatemers into unit-length genomes of appropriate length for encapsidation. We used ESPRIT, a high-throughput screening method, to identify a soluble purifiable fragment of UL89 from a library of 18,432 randomly truncated ul89 DNA constructs. The purified protein was crystallized and its three-dimensional structure was solved. This protein corresponds to the key nuclease domain of the terminase and shows an RNase H/integrase-like fold. We demonstrate that UL89-C has the capacity to process the DNA and that this function is dependent on Mn 2+ ions, two of which are located at the active site pocket. We also show that the nuclease function can be inactivated by raltegravir, a recently approved anti-AIDS drug that targets the HIV integrase.
The structure of the 45 amino acid transcriptional repressor, CopG, has been solved unliganded and bound to its target operator DNA. The protein, encoded by the promiscuous streptococcal plasmid pMV158, is involved in the control of plasmid copy number. The structure of this protein repressor, which is the shortest reported to date and the first isolated from a plasmid, has a homodimeric ribbon-helix-helix arrangement. It is the prototype for a family of homologous plasmid repressors. CopG cooperatively associates, completely protecting several turns on one face of the double helix in both directions from a 13-bp pseudosymmetric primary DNA recognition element. In the complex structure, one protein tetramer binds at one face of a 19-bp oligonucleotide, containing the pseudosymmetric element, with two beta-ribbons inserted into the major groove. The DNA is bent 60 degrees by compression of both major and minor grooves. The protein dimer displays topological similarity to Arc and MetJ repressors. Nevertheless, the functional tetramer has a unique structure with the two vicinal recognition ribbon elements at a short distance, thus inducing strong DNA bend. Further structural resemblance is found with helix-turn-helix regions of unrelated DNA-binding proteins. In contrast to these, however, the bihelical region of CopG has a role in oligomerization instead of DNA recognition. This observation unveils an evolutionary link between ribbon-helix-helix and helix-turn-helix proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.