PhoB is a signal transduction response regulator that activates nearly 40 genes in phosphate depletion conditions in E. coli and closely related bacteria. The structure of the PhoB effector domain in complex with its target DNA sequence, or pho box, reveals a novel tandem arrangement in which several monomers bind head to tail to successive 11-base pair direct-repeat sequences, coating one face of a smoothly bent double helix. The protein has a winged helix fold in which the DNA recognition elements comprise helix alpha 3, penetrating the major groove, and a beta hairpin wing interacting with a compressed minor groove via Arg219, tightly sandwiched between the DNA sugar backbones. The transactivation loops protrude laterally in an appropriate orientation to interact with the RNA polymerase sigma(70) subunit, which triggers transcription initiation.
Matrix metalloproteinases (MMPs) are zinc-dependent protein and peptide hydrolases. They have been almost exclusively studied in vertebrates and 23 paralogs are present in humans. They are widely involved in metabolism regulation through both extensive protein degradation and selective peptide-bond hydrolysis. If MMPs are not subjected to exquisite spatial and temporal control, they become destructive, which can lead to pathologies such as arthritis, inflammation, and cancer. The main therapeutic strategy to combat the dysregulation of MMPs is the design of drugs to target their catalytic domains, for which purpose detailed structural knowledge is essential. The catalytic domains of 13 MMPs have been structurally analyzed so far and they belong to the "metzincin" clan of metalloendopeptidases. These compact, spherical, approximately 165-residue molecules are divided by a shallow substrate-binding crevice into an upper and a lower sub-domain. The molecules have an extended zinc-binding motif, HEXXHXXGXXH, which contains three zinc-binding histidines and a glutamate that acts as a general base/acid during catalysis. In addition, a conserved methionine lying within a "Met-turn" provides a hydrophobic base for the zinc-binding site. Further earmarks of MMPs are three alpha-helices and a five-stranded beta-sheet, as well as at least two calcium sites and a second zinc site with structural functions. Most MMPs are secreted as inactive zymogens with an N-terminal approximately 80-residue pro-domain, which folds into a three-helix globular domain and inhibits the catalytic zinc through a cysteine imbedded in a conserved motif, PRCGXPD. Removal of the pro-domain enables access of a catalytic solvent molecule and substrate molecules to the active-site cleft, which harbors a hydrophobic S(1')-pocket as main determinant of specificity. Together with the catalytic zinc ion, this pocket has been targeted since the onset of drug development against MMPs. However, the inability of first- and second-generation inhibitors to distinguish between different MMPs led to failures in clinical trials. More recent approaches have produced highly specific inhibitors to tackle selected MMPs, thus anticipating the development of more successful drugs in the near future. Further strategies should include the detailed structural characterization of the remaining ten MMPs to assist in achieving higher drug selectivity. In this review, we discuss the general architecture of MMP catalytic domains and its implication in function, zymogenic activation, and drug design.
The transfer of DNA across membranes and between cells is a central biological process; however, its molecular mechanism remains unknown. In prokaryotes, trans-membrane passage by bacterial conjugation, is the main route for horizontal gene transfer. It is the means for rapid acquisition of new genetic information, including antibiotic resistance by pathogens. Trans-kingdom gene transfer from bacteria to plants or fungi and even bacterial sporulation are special cases of conjugation. An integral membrane DNA-binding protein, called TrwB in the Escherichia coli R388 conjugative system, is essential for the conjugation process. This large multimeric protein is responsible for recruiting the relaxosome DNA-protein complex, and participates in the transfer of a single DNA strand during cell mating. Here we report the three-dimensional structure of a soluble variant of TrwB. The molecule consists of two domains: a nucleotide-binding domain of alpha/beta topology, reminiscent of RecA and DNA ring helicases, and an all-alpha domain. Six equivalent protein monomers associate to form an almost spherical quaternary structure that is strikingly similar to F1-ATPase. A central channel, 20 A in width, traverses the hexamer.
MicroReviewBacterial conjugation: a two-step mechanism for DNA transport the recipient cytoplasm. This is the first step in conjugation. The second step is the active pumping of the DNA to the recipient, using the already available T4SS transport conduit. It is proposed that this second step is catalysed by the coupling proteins. Our 'shoot and pump' model solves the protein-DNA transport paradox of T4SS. Conjugation as the merging of two ancient bacterial systemsDNA replication and macromolecule transport across membranes are basic processes of life. If linked, they could form the basis for a new mechanism, DNA secretion, by simply driving the displaced replicating DNA strand to the macromolecular transporter in the membrane. It is tempting to imagine that bacterial conjugation once arose in this way. For this to happen, some DNAreplicating enzymes on one side and protein transporters on the other would have to adjust to new substrates. In addition, a new protein is needed to bring the displaced DNA in contact with the transporter: a coupling protein.With this one and only new protein (and a few adjustments), bacteria could have acquired the basics for conjugation, a mechanism that provides them with a unique means for genetic exchange and a powerful source of genetic variability.Indeed, bacterial conjugation systems (including the related Vir system that Agrobacterium tumefaciens uses to transfer DNA to plants) show striking similarities to both DNA replication and macromolecular transport systems. Conjugative DNA-processing enzymes and their substrate DNA sequence (components of the so-called relaxosome) show extended sequence similarity to rolling-circle replication (RCR) systems (Waters and Guiney, 1993). Moreover, the set of conjugative proteins that assembles the membrane transporter belong to the type IV secretion system (T4SS) family (Christie, 2001). In addition to proteins with similarity to RCR or T4SS, all conjugative systems include one protein that has no obvious counterpart in either system. This is considered to be the coupling protein that connects the relaxosome with the membrane transporter. The evidence for this role will be discussed below. SummaryBacterial conjugation is a promiscuous DNA transport mechanism. Conjugative plasmids transfer themselves between most bacteria, thus being one of the main causal agents of the spread of antibiotic resistance among pathogenic bacteria. Moreover, DNA can be transferred conjugatively into eukaryotic host cells. In this review, we aim to address several basic questions regarding the DNA transfer mechanism. Conjugation can be visualized as a DNA rolling-circle replication (RCR) system linked to a type IV secretion system (T4SS), the latter being macromolecular transporters widely involved in pathogenic mechanisms. The scheme 'replication + secretion' suggests how the mechanism would work on the DNA substrate and at the bacterial membrane. But, how do these two parts come into contact? Furthermore, how is the DNA transported? T4SS are known to be invo...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.