The eotaxins are a family of CC chemokines that coordinate the recruitment of inflammatory cells, in particular eosinophils, to sites of allergic inflammation. The cDNA for eotaxin-2 (CC chemokine ligand 24) was originally isolated from an activated monocyte library. In this study, we show for the first time that peripheral blood monocytes generate bioactive eotaxin-2 protein constitutively. Eotaxin-2 production was significantly up-regulated when monocytes were stimulated with the proinflammatory cytokine IL-1β and the microbial stimuli, LPS and zymosan. In contrast, the Th2 cytokines, IL-4 and IL-13, and the proinflammatory cytokine, TNF-α, acting alone or in combination, did not enhance the generation of eotaxin-2 by monocytes. Indeed, IL-4 suppressed the generation of eotaxin-2 by LPS-stimulated monocytes. Although other chemokines, including macrophage-inflammatory protein-1α, monocyte chemoattractant protein-1, macrophage-derived chemokine, and IL-8 were generated by monocytes, eotaxin-1 (CC chemokine ligand 11) could not be detected in the supernatants of monocytes cultured in the presence or absence of any of the stimuli used in the above experiments. Furthermore, human dermal fibroblasts that produce eotaxin-1 did not generate eotaxin-2 under basal conditions or when stimulated with specific factors, including IL-4, IL-13, TNF-α, and LPS. When monocytes were differentiated into macrophages, their constitutive generation of eotaxin-2 was suppressed. Moreover, IL-4, but not LPS, up-regulated the production of eotaxin-2 by macrophages. Taken as a whole, these results support a role for macrophage-derived eotaxin-2 in adaptive immunity, with a Th2 bias. In contrast, a role for monocyte-derived eotaxin-2 is implicated in innate immunity.