The RET kinase has emerged as a promising target for the therapy of medullary thyroid cancers (MTC) and of a subset of papillary thyroid cancers. NVP-AST487, a N,N ¶-diphenyl urea with an IC 50 of 0.88 Mmol/L on RET kinase, inhibited RET autophosphorylation and activation of downstream effectors, and potently inhibited the growth of human thyroid cancer cell lines with activating mutations of RET but not of lines without RET mutations. NVP-AST487 induced a dose-dependent growth inhibition of xenografts of NIH3T3 cells expressing oncogenic RET, and of the MTC cell line TT in nude mice. MTCs secrete calcitonin, a useful indicator of tumor burden. Human plasma calcitonin levels derived from the TT cell xenografts were inhibited shortly after treatment, when tumor volume was still unchanged, indicating that the effects of RET kinase inhibition on calcitonin secretion were temporally dissociated from its tumor-inhibitory properties. Accordingly, NVP-AST487 inhibited calcitonin gene expression in vitro in TT cells, in part, through decreased gene transcription. These data point to a previously unknown physiologic role of RET signaling on calcitonin gene expression. Indeed, the RET ligands persephin and GDNF robustly stimulated calcitonin mRNA, which was blocked by pretreatment with NVP-AST487.