We consider extending the modal logic KD45, commonly taken as the baseline system for belief, with propositional quantifiers that can be used to formalize natural language sentences such as “everything I believe is true” or “there is something that I neither believe nor disbelieve.” Our main results are axiomatizations of the logics with propositional quantifiers of natural classes of complete Boolean algebras with an operator (BAOs) validating KD45. Among them is the class of complete, atomic, and completely multiplicative BAOs validating KD45. Hence, by duality, we also cover the usual method of adding propositional quantifiers to normal modal logics by considering their classes of Kripke frames. In addition, we obtain decidability for all the concrete logics we discuss.