This paper investigates the principles that one must add to Boolean algebra to capture reasoning not only about intersection, union, and complementation of sets, but also about the relative size of sets. We completely axiomatize such reasoning under the Cantorian definition of relative size in terms of injections.
This paper studies connections between two alternatives to the standard probability calculus for representing and reasoning about uncertainty: imprecise probability and comparative probability. The goal is to identify complete logics for reasoning about uncertainty in a comparative probabilistic language whose semantics is given in terms of imprecise probability. Comparative probability operators are interpreted as quantifying over a set of probability measures. Modal and dynamic operators are added for reasoning about epistemic possibility and updating sets of probability measures.
We consider extending the modal logic KD45, commonly taken as the baseline system for belief, with propositional quantifiers that can be used to formalize natural language sentences such as “everything I believe is true” or “there is something that I neither believe nor disbelieve.” Our main results are axiomatizations of the logics with propositional quantifiers of natural classes of complete Boolean algebras with an operator (BAOs) validating KD45. Among them is the class of complete, atomic, and completely multiplicative BAOs validating KD45. Hence, by duality, we also cover the usual method of adding propositional quantifiers to normal modal logics by considering their classes of Kripke frames. In addition, we obtain decidability for all the concrete logics we discuss.
The early literature on epistemic logic in philosophy focused on reasoning about the knowledge or belief of a single agent, especially on controversies about "introspection axioms" such as the 4 and 5 axioms. By contrast, the later literature on epistemic logic in computer science and game theory has focused on multi-agent epistemic reasoning, with the single-agent 4 and 5 axioms largely taken for granted. In the relevant multi-agent scenarios, it is often important to reason about what agent A believes about what agent B believes about what agent A believes; but it is rarely important to reason just about what agent A believes about what agent A believes. This raises the question of the extent to which single-agent introspection axioms actually matter for multi-agent epistemic reasoning. In this paper, we formalize and answer this question. To formalize the question, we first define a set of multi-agent formulas that we call agent-alternating formulas, including formulas like 2 a 2 b 2 a p but not formulas like 2 a 2 a p. We then prove, for the case of belief, that if one starts with multi-agent K or KD, then adding both the 4 and 5 axioms (or adding the B axiom) does not allow the derivation of any new agent-alternating formulas-in this sense, introspection axioms do not matter. By contrast, we show that such conservativity results fail for knowledge and multi-agent KT, though they hold with respect to a smaller class of agent-nonrepeating formulas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.