The standard topological representation of a Boolean algebra via the clopen sets of a Stone space requires a nonconstructive choice principle, equivalent to the Boolean Prime Ideal Theorem. In this article, we describe a choice-free topological representation of Boolean algebras. This representation uses a subclass of the spectral spaces that Stone used in his representation of distributive lattices via compact open sets. It also takes advantage of Tarski’s observation that the regular open sets of any topological space form a Boolean algebra. We prove without choice principles that any Boolean algebra arises from a special spectral space X via the compact regular open sets of X; these sets may also be described as those that are both compact open in X and regular open in the upset topology of the specialization order of X, allowing one to apply to an arbitrary Boolean algebra simple reasoning about regular opens of a separative poset. Our representation is therefore a mix of Stone and Tarski, with the two connected by Vietoris: the relevant spectral spaces also arise as the hyperspace of nonempty closed sets of a Stone space endowed with the upper Vietoris topology. This connection makes clear the relation between our point-set topological approach to choice-free Stone duality, which may be called the hyperspace approach, and a point-free approach to choice-free Stone duality using Stone locales. Unlike Stone’s representation of Boolean algebras via Stone spaces, our choice-free topological representation of Boolean algebras does not show that every Boolean algebra can be represented as a field of sets; but like Stone’s representation, it provides the benefit of a topological perspective on Boolean algebras, only now without choice. In addition to representation, we establish a choice-free dual equivalence between the category of Boolean algebras with Boolean homomorphisms and a subcategory of the category of spectral spaces with spectral maps. We show how this duality can be used to prove some basic facts about Boolean algebras.
We introduce new algebraic and topological semantics for inquisitive logic. The algebraic semantics is based on special Heyting algebras, which we call inquisitive algebras, with propositional valuations ranging over only the ¬¬-fixpoints of the algebra. We show how inquisitive algebras arise from Boolean algebras: for a given Boolean algebra B, we define its inquisitive extension H(B) and prove that H(B) is the unique inquisitive algebra having B as its algebra of ¬¬-fixpoints. We also show that inquisitive algebras determine Medvedev's logic of finite problems. In addition to the algebraic characterization of H(B), we give a topological characterization of H(B) in terms of the recently introduced choice-free duality for Boolean algebras using so-called upper Vietoris spaces (UV-spaces) [2]. In particular, while a Boolean algebra B is realized as the Boolean algebra of compact regular open elements of a UV-space dual to B, we show that H(B) is realized as the algebra of compact open elements of this space. This connection yields a new topological semantics for inquisitive logic.
Epistemic closure has been a central issue in epistemology over the last forty years. According to versions of the relevant alternatives and subjunctivist theories of knowledge, epistemic closure can fail: an agent who knows some propositions can fail to know a logical consequence of those propositions, even if the agent explicitly believes the consequence (having "competently deduced" it from the known propositions). In this sense, the claim that epistemic closure can fail must be distinguished from the fact that agents do not always believe, let alone know, the consequences of what they know-a fact that raises the "problem of logical omniscience" that has been central in epistemic logic. This paper, part I of II, is a study of epistemic closure from the perspective of epistemic logic. First, I introduce models for epistemic logic, based on Lewis's models for counterfactuals, that correspond closely to the pictures of the relevant alternatives and subjunctivist theories of knowledge in epistemology. Second, I give an exact characterization of the closure properties of knowledge according to these theories, as formalized. Finally, I consider the relation between closure and higher-order knowledge. The philosophical repercussions of these results and results from part II, which prompt a reassessment of the issue of closure in epistemology, are discussed further in companion papers. As a contribution to modal logic, this paper demonstrates an alternative approach to proving modal completeness theorems, without the standard canonical model construction. By "modal decomposition" I obtain completeness and other results for two non-normal modal logics with respect to new semantics. One of these logics, dubbed the logic of ranked relevant alternatives, appears not to have been previously identified in the modal logic literature. More broadly, the paper presents epistemology as a rich area for logical study.
License https://creativecommons.org/licenses/by-nc-nd/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the Abstract Brouwer's views on the foundations of mathematics have inspired the study of intuitionistic logic, including the study of the intuitionistic propositional calculus and its extensions. The theory of these systems has become an independent branch of logic with connections to lattice theory, topology, modal logic, and other areas. This paper aims to present a modern account of semantics for intuitionistic propositional systems. The guiding idea is that of a hierarchy of semantics, organized by increasing generality: from the least general Kripke semantics on through Beth semantics, topological semantics, Dragalin semantics, and finally to the most general algebraic semantics. While the Kripke, topological, and algebraic semantics have been extensively studied, the Beth and Dragalin semantics have received less attention. We bring Beth and Dragalin semantics to the fore, relating them to the concept of a nucleus from pointfree topology, which provides a unifying perspective on the semantic hierarchy.
In this paper, we explore semantics for comparative epistemic modals that avoid the entailment problems shown by Yalcin (2006Yalcin ( , 2009Yalcin ( , 2010 to result from Kratzer's (1991) semantics. In contrast to the alternative semantics presented by Lassiter (2010, 2011) based on finitely additive measures, we introduce semantics based on qualitatively additive measures, as well as semantics based on purely qualitative orderings, including orderings on propositions derived from orderings on worlds in the tradition of Kratzer (1991Kratzer ( , 2012. All of these semantics avoid the entailment problems that result from Kratzer's semantics. Our discussion focuses on methodological issues concerning the choice between different semantics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.