Abstract. Data warehouses and OLAP systems help to analyze complex multidimensional data and provide decision support. With the availability of large amounts of spatial data in recent years, several new models have been proposed to enable the integration of spatial data in data warehouses and to help analyze such data. This is often achieved by a combination of GIS and spatial analysis tools with OLAP and database systems, with the primary goal of supporting spatial analysis dimensions, spatial measures and spatial aggregation operations. However, this poses several new challenges related to spatial data modeling in a multidimensional context, such as the need for new spatial aggregation operations and ensuring consistent and valid results. In this paper, we review the existing modeling strategies for spatial data warehouses and SOLAP in all three levels: conceptual, logical and implementation. While studying these models, we gather the most essential requirements for handling spatial data in data warehouses and use insights from spatial databases to provide a "meta-framework" for modeling spatial data warehouses. This strategy keeps the user as the focal point and achieves a clear abstraction of the data for all stakeholders in the system. Our goal is to make analysis more user-friendly and pave the way for a clear conceptual model that defines new multidimensional abstract data types (ADTs) and operations to support spatial data in data warehouses.