We recently derived a method, local orthogonal rectification (LOR), that provides a natural and useful geometric frame for analyzing dynamics relative to a base curve in the phase plane for two-dimensional systems of ODEs (Letson and Rubin, SIAM J. Appl. Dyn. Syst., 2018). This work extends LOR to apply to any embedded base manifold in a system of ODEs of arbitrary dimension and establishes a corresponding system of LOR equations for analyzing dynamics within the LOR frame, which maps naturally back to the original phase space. The LOR equations encode geometric properties of the underlying flow and remain valid, in general, beyond a local neighborhood of the embedded manifold. In addition to developing a general theory for LOR that makes use of a given normal frame, we show how to construct a normal frame that conveniently simplifies the computations involved in LOR. Finally, we illustrate the utility of LOR by showing that a blow-up transformation on the LOR equations provides a useful decomposition for studying trajectories' behavior relative to the embedded base manifold and by using LOR to identify canard behavior near a fold of a critical manifold in a two-timescale system.