2015
DOI: 10.1007/s11042-015-3025-3
|View full text |Cite
|
Sign up to set email alerts
|

Extensions of principle component analysis with applications on vision based computing

Abstract: This paper mainly focuses on the principle component analysis (PCA) and its applications on vision based computing. The underlying mechanism of PCA given and several significant factors, involved with subspace training are discussed theoretically in detail including principle components energy, residuals assessment, and decomposition computation. The typical extensions, including probabilistic PCA (PPCA), kernel PCA (KPCA), multi-dimensional PCA and robust PCA (RPCA), have been presented with critical analysis… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
2
0
1

Year Published

2017
2017
2024
2024

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 10 publications
(3 citation statements)
references
References 121 publications
0
2
0
1
Order By: Relevance
“…Dalam literatur, dapat ditemukan berbagai pendekatan berbasis perangkat lunak untuk pengenalan wajah. Dalam [2] aplikasi PCA dibahas dalam komputasi berbasis visi. Hasil penelitian menunjukkan bahwa pengurangan dimensi berbasis PCA dan klasifikasi gambar memiliki potensi untuk industrialisasi, tetapi membutuhkan jumlah komputasi yang besar.…”
Section: Pendahuluanunclassified
“…Dalam literatur, dapat ditemukan berbagai pendekatan berbasis perangkat lunak untuk pengenalan wajah. Dalam [2] aplikasi PCA dibahas dalam komputasi berbasis visi. Hasil penelitian menunjukkan bahwa pengurangan dimensi berbasis PCA dan klasifikasi gambar memiliki potensi untuk industrialisasi, tetapi membutuhkan jumlah komputasi yang besar.…”
Section: Pendahuluanunclassified
“…e most well known is the principal component analysis (PCA) [13], which aims to preserve the main energy of the original feature set and maximize the second-order statistics of original features [3]. For its superior capability of maintaining global data structure, the PCA is widely used as a data preprocessing and feature extraction technique for face recognition, computer vision, and fault detection [14][15][16][17]. Despite some advantages, PCA is not suitable for manifoldstructure data because it is a linear method that only considers the global Euclidean structure of samples.…”
Section: Introductionmentioning
confidence: 99%
“…In the literature various software-based approaches can be found for face recognition. In [2] the applications of PCA are discussed in vision based computing. The results showed, that PCA based dimension reduction and image classification has a potential for industrialization, but it requires large amount of computation.…”
Section: Introductionmentioning
confidence: 99%