Barth syndrome (BTHS) is an X-linked genetic condition caused by defects in TAZ, which encodes a transacylase involved in the remodeling of the inner mitochondrial membrane phospholipid, cardiolipin (CL). As such, CL has been implicated in numerous mitochondrial functions, and the role of defective CL in the clinical pathology of BTHS is under intense investigation. We used untargeted proteomics, shotgun lipidomics, gene expression analysis, and targeted metabolomics to identify novel areas of mitochondrial dysfunction in a new model of TAZ deficiency in HEK293 cells. Functional annotation analysis of proteomics data revealed abnormal regulation of mitochondrial respiratory chain complex I (CI), driven by the reduced abundance of 6 CI associated proteins in TAZ-deficient HEK293 cells: MT-ND3, NDUFA5, NDUFAB1, NDUFB2, NDUFB4, and NDUFAF1. This resulted in reduced assembly and function of CI in TAZ-deficient HEK293 cells as well as BTHS patient derived lymphoblast cells. We also identified increased abundance of PARL, a rhomboid protein involved in the regulation of mitophagy and apoptosis, and abnormal downstream processing of PGAM5, another mediator of mitochondrial quality control, in TAZ-deficient cells. Lastly, we modulated CL via the phospholipase inhibitor bromoenol lactone and the CL targeted SS-peptide, SS-31, and showed that each is able to remediate abnormalities in CI abundance as well as PGAM5 processing. Thus, mitochondrial respiratory chain CI and PARL/PGAM5 regulated mitochondrial quality control, both of whose functions localize to the inner mitochondrial membrane, are dysregulated due to TAZ deficiency and are partially remediated via modulation of CL.