This paper investigates the groundwater quality in six major districts of Madhya Pradesh in central India, namely, Balaghat, Chhindwara, Dhar, Jhabua, Mandla, and Seoni during the 2010-2011 sampling campaign, and discusses improvements made in the supplied water quality between the years 2011 and 2017. Groundwater is the main source of water for a combined rural population of over 7 million in these districts. Its contamination could have a huge impact on public health. We analyzed the data collected from a large-scale water sampling campaign carried out by the Public Health Engineering Department (PHED), Government of Madhya Pradesh between 2010 and 2011 during which all rural tube wells and dug wells were sampled in these six districts. Eight hundred thirty-one dug wells and 47,606 tube wells were sampled in total and were analyzed for turbidity, hardness, iron, nitrate, fluoride, chloride, and sulfate ion concentrations. Our study found water in 21 out of the 228 dug wells in Chhindwara district unfit for drinking due to fluoride contamination while all dug wells in Balaghat had fluoride within the permissible limit. Twenty-six of the 56 dug wells and 4825 of the 9390 tube wells in Dhar district exceeded the permissible limit for nitrate while 100% dug wells in Balaghat, Seoni, and Chhindwara had low levels of nitrate. Twenty-four of the 228 dug wells and 1669 of 6790 tube wells in Chhindwara had high iron concentration. The median pH value in both dug wells and tube wells varied between 6 and 8 in all six districts. Still, a significant number of tube wells exceeded a pH of 8.5 especially in Mandla and Seoni districts. In conclusion, this study shows that parts of inhabited rural Madhya Pradesh were potentially exposed to contaminated subsurface water during 2010-2011. The analysis has been correlated with rural health survey results wherever available to estimate the visible impact. We next highlight that the quality of drinking water has enormously improved since 2011 in all six districts as a result of rigorous treatment of extracted subsurface water on the ground before supplying to rural habitations as well as efficient distribution from healthy wells. Our research could provide impetus to the state government to develop innovative solutions for improving groundwater quality in these areas as existing solutions are largely protective techniques. We have identified specific ions responsible for groundwater contamination in different districts which would allow the development of district specific effective mitigation strategies.