Posttraumatic stress disorder (PTSD) is an anxiety disorder that occurs after exposure to a traumatic event. This study aimed to investigate the neurobiologic changes before and after exposure-based therapy by PET in a rat model of PTSD. Methods: Serial 18 F-FDG PET imaging studies were performed under the control (tone presentation), fear-conditioning, and extinction retrieval phases. Neuroactivity marker c-Fos protein was used for immunostaining. Results: Increased glucose metabolism was observed in the bilateral amygdala after fearconditioning (P , 0.001) and in the right posterior insular cortex under extinction retrieval (P , 0.001) compared with the control phase. Increased c-Fos expression in the posterior insular cortex under extinction retrieval was positively correlated to the glucose metabolism (P , 0.01). Conclusion: Our results indicated that the amygdala plays a key role in fear memory formation and, most importantly, the insular cortex is related to the retrieval of extinction memory. 18 F-FDG PET may provide a promising in vivo approach for evaluating exposurebased therapy of PTSD. Post traumatic stress disorder (PTSD) is the most costly psychiatric disorder, affecting up to 40% of individuals over lifetime exposure to traumatic events (1,2). Over the past decades, considerable studies have explored how fear memories are encoded in the brain. A neurocircuitry model of PTSD emphasized the importance of the amygdala, as well as its interactions with the ventral/ medial prefrontal cortex (PFC) and hippocampus (3). In accord with this model, initial neuroimaging studies of PTSD provided evidence for exaggerated amygdala responses and attenuated ventral/ medial PFC responses during exposure to reminders of the traumatic event (3). In addition, Pavlovian fear-conditioning studies highlighted the key role of the amygdala in the acquisition and storage of conditioned fear memories (4,5). Electrophysiologic recording and inactivation studies in rats suggest that fear extinction depended on increased neuroactivity in the medial PFC under extinction training (6,7). Furthermore, the amygdala has been found activated during fear acquisition (8) and positively correlated with the severity of PTSD symptoms (9). Failure to recall fear extinction memory is associated with lower activation in the hippocampus and ventral/medial PFC in PTSD patients relative to trauma-exposed healthy subjects (10).Although exposure-based therapy (conceptually based on fear extinction) has been widely used in the treatment of PTSD (1), its underlying mechanism has not been completely elucidated. Because PET has been increasingly used to characterize neural activities, we hypothesized that 18 F-FDG PET could be applied for evaluating cerebral glucose metabolism before and after exposure-based therapy and could provide a potential translational tool for future clinical applications. Thus, the present study aimed to investigate the neurobiologic changes by 18 F-FDG PET in a rat model of PTSD.
MATERIALS AND METHODS
AnimalsMale Sprague-Da...