Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
REPORT DATE (DD-MM-YYYY)2
SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) Air Force Office of Scientific Research
NUMBER(S)
DISTRIBUTION/ AVAILABILITY STATEMENTApproved for public release; distribution is unlimited AFRL-SR-AR-TR-07-01 00
SUPPLEMENTARY NOTES
ABSTRACTStudies were conducted in several relevant areas, including (1) validation of the chemistry and transport models against the extinction of ultra-lean premixed hydrogen-air mixtures, (2) a comprehensive theoretical analysis of the reaction kinetics of carbon monoxide and the hydroxyl radical, (3) a theoretical kinetic study of the decomposition of ethylene oxide; (4) a gas-kinetic analysis for the transport properties of long chain molecules in dilute gases, (5) quantum-chemistry, master equation modeling of the unimolecular decomposition of orthobenzyne, (6) extension of the previously developed hydrogen/carbon model to combustion pressures as high as 600 atm, (7) an updated kinetic mechanism of small-hydrocarbon fuel combustion for use as a kinetic foundation of higher hydrocarbon combustion, and (8) a methodology for kinetic uncertainty propagation. These projects represent the two key ingredients for meeting the overall project objectives: (a) an accurate physico-chemical property database for combustion kinetics, and (b) a unified and optimized kinetic model for liquid aliphatic and aromatic fuel combustion with quantifiable uncertainties.15.