ersonal knowledge is a versatile resource that is valuable for a wide range of downstream applications. Background facts about users can allow chatbot assistants to produce more topical and empathic replies. In the context of recommendation and retrieval models, personal facts can be used to customize the ranking results for individual users.A Personal Knowledge Base, populated with personal facts, such as demographic information, interests and interpersonal relationships, is a unique endpoint for storing and querying personal knowledge. Such knowledge bases are easily interpretable and can provide users with full control over their own personal knowledge, including revising stored facts and managing access by downstream services for personalization purposes.To alleviate users from extensive manual effort to build such personal knowledge base, we can leverage automated extraction methods applied to the textual content of the users, such as dialogue transcripts or social media posts. Mainstream extraction methods specialize on well-structured data, such as biographical texts or encyclopedic articles, which are rare for most people. In turn, conversational data is abundant but challenging to process and requires specialized methods for extraction of personal facts.In this dissertation we address the acquisition of personal knowledge from conversational data. We propose several novel deep learning models for inferring speakers' personal attributes:Experimente mit verschiedenen Konversationstexten, inklusive Reddit-Diskussionen und Filmskripten, demonstrieren die Praxistauglichkeit unserer Methoden und ihre hervorragende Leistung im Vergleich zum aktuellen Stand der Technik.