This paper formalizes the problem of solving multi-sentence algebraic word problems as that of generating and scoring equation trees. We use integer linear programming to generate equation trees and score their likelihood by learning local and global discriminative models. These models are trained on a small set of word problems and their answers, without any manual annotation, in order to choose the equation that best matches the problem text. We refer to the overall system as Alges. We compare Alges with previous work and show that it covers the full gamut of arithmetic operations whereas Hosseini et al. (2014) only handle addition and subtraction. In addition, Alges overcomes the brittleness of the Kushman et al. (2014) approach on single-equation problems, yielding a 15% to 50% reduction in error.
Recent work across several AI subdisciplines has focused on automatically solving math word problems. In this paper we introduce MAWPS, an online repository of Math Word Problems, to provide a unified testbed to evaluate different algorithms. MAWPS allows for the automatic construction of datasets with particular characteristics, providing tools for tuning the lexical and template overlap of a dataset as well as for filtering ungrammatical problems from web-sourced corpora. The online nature of this repository facilitates easy community contribution. At present, we have amassed 3,320 problems, including the full datasets used in several prominent works.
Generating texts which express complex ideas spanning multiple sentences requires a structured representation of their content (document plan), but these representations are prohibitively expensive to manually produce. In this work, we address the problem of generating coherent multi-sentence texts from the output of an information extraction system, and in particular a knowledge graph. Graphical knowledge representations are ubiquitous in computing, but pose a significant challenge for text generation techniques due to their non-hierarchical nature, collapsing of longdistance dependencies, and structural variety. We introduce a novel graph transforming encoder which can leverage the relational structure of such knowledge graphs without imposing linearization or hierarchical constraints. Incorporated into an encoder-decoder setup, we provide an end-to-end trainable system for graph-to-text generation that we apply to the domain of scientific text. Automatic and human evaluations show that our technique produces more informative texts which exhibit better document structure than competitive encoder-decoder methods. 1
We introduce a large-scale dataset of math word problems and an interpretable neural math problem solver that learns to map problems to operation programs. Due to annotation challenges, current datasets in this domain have been either relatively small in scale or did not offer precise operational annotations over diverse problem types. We introduce a new representation language to model precise operation programs corresponding to each math problem that aim to improve both the performance and the interpretability of the learned models. Using this representation language, our new dataset, MathQA, significantly enhances the AQuA dataset with fully-specified operational programs. We additionally introduce a neural sequence-to-program model enhanced with automatic problem categorization. Our experiments show improvements over competitive baselines in our MathQA as well as the AQuA datasets. The results are still significantly lower than human performance indicating that the dataset poses new challenges for future research. Our dataset is available at: https: //math-qa.github.io/math-QA/.
We address the task of explaining relationships between two scientific documents using natural language text. This task requires modeling the complex content of long technical documents, deducing a relationship between these documents, and expressing that relationship in text. Successful solutions can help improve researcher efficiency in search and review. In this paper, we operationalize this task by using citing sentences as a proxy. We establish a large dataset for our task. We pretrain a large language model to serve as the foundation for autoregressive approaches to the task. We explore the impact of taking different views on the two documents, including the use of dense representations extracted with scientific information extraction systems. We provide extensive automatic and human evaluations which show the promise of such models, and make clear the challenges for future work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.