We address the task of explaining relationships between two scientific documents using natural language text. This task requires modeling the complex content of long technical documents, deducing a relationship between these documents, and expressing that relationship in text. Successful solutions can help improve researcher efficiency in search and review. In this paper, we operationalize this task by using citing sentences as a proxy. We establish a large dataset for our task. We pretrain a large language model to serve as the foundation for autoregressive approaches to the task. We explore the impact of taking different views on the two documents, including the use of dense representations extracted with scientific information extraction systems. We provide extensive automatic and human evaluations which show the promise of such models, and make clear the challenges for future work.
When an NLP model is trained on text data from one time period and tested or deployed on data from another, the resulting temporal misalignment can degrade end-task performance. In this work, we establish a suite of eight diverse tasks across different domains (social media, science papers, news, and reviews) and periods of time (spanning five years or more) to quantify the effects of temporal misalignment. Our study is focused on the ubiquitous setting where a pretrained model is optionally adapted through continued domainspecific pretraining, followed by task-specific finetuning. We establish a suite of tasks across multiple domains to study temporal misalignment in modern NLP systems. We find stronger effects of temporal misalignment on task performance than have been previously reported. We also find that, while temporal adaptation through continued pretraining can help, these gains are small compared to task-specific finetuning on data from the target time period. Our findings motivate continued research to improve temporal robustness of NLP models. 1
Online debates allow people to express their persuasive abilities and provide exciting opportunities for understanding persuasion. Prior studies have focused on studying persuasion in debate content, but without accounting for each debater’s history or exploring the progression of a debater’s persuasive ability. We study debater skill by modeling how participants progress over time in a collection of debates from Debate.org . We build on a widely used model of skill in two-player games and augment it with linguistic features of a debater’s content. We show that online debaters’ skill levels do tend to improve over time. Incorporating linguistic profiles leads to more robust skill estimation than winning records alone. Notably, we find that an interaction feature combining uncertainty cues (hedging) with terms strongly associated with either side of a particular debate (fightin’ words) is more predictive than either feature on its own, indicating the importance of fine- grained linguistic features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.