The process of extracting data to obtain useful information is known as data mining. Furthermore, one of the promising and widely used techniques for this extraction process is association rule mining. This technique is used to identify interesting relationships between sets of items in a dataset and predict associative behavior for new data. The first step in association rule mining is the determination of the frequent item set that will be involved in the rule formation process. In this step, a threshold is used to eliminate items excluded in the frequent itemset which is also known as the minimum support. Furthermore, the threshold provides an important role in determining the number of rules generated. However, setting the wrong threshold leads to the failure of the association rule mining to obtain rules. Currently, the minimum support value is determined by the user. This leads to a challenge that becomes worse for a user that is ignorant of the dataset characteristics. In this study, a method was proposed to determine the minimum support value based on the characteristics of the dataset. Furthermore, this required certain criteria to be used as thresholds which led to more adaptive rules according to the needs of the user. The results of this study showed that 6 from 8 datasets, obtained a rule with lift ratio > 1 using the minimum threshold value that was determined through this method.