2017
DOI: 10.25081/jsa.2017.v1.54
|View full text |Cite
|
Sign up to set email alerts
|

Extraction and molecular detection of viral dsRNA from different infected plants

Abstract: Extraction of viral double stranded RNA (dsRNA) from infected plants is helpful in identification of the viruses involved in infection. To date, there have been several methods developed to isolate dsRNA; however, type of the plant and virus is determinative in extraction efficiency. In this study we extracted dsRNA from different woody and herbaceous plants through a modified method which reduces the costs and time of extraction procedure. This method is based on different affinity of nucleic acids for the ce… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0

Year Published

2019
2019
2022
2022

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
(2 citation statements)
references
References 17 publications
0
2
0
Order By: Relevance
“…1(A)) followed by release of second instar mealybug nymphs on it and dipping the leaf petiole in nuclease free water for 48 h. Mealybug nymphs were collected (n = 25 in 3 biological replicates) from leaves 72 h post release for isolation of total RNA using Tri-Reagent ® (Sigma-Aldrich)) followed by cDNA synthesis (First strand cDNA synthesis kit, ThermoFisher Scientific) and relative estimation of mRNA transcripts of targeted genes using RT-qPCR as described earlier. dsRNA was extracted from leaf post petiole dip (12 h) to confirm its uptake in leaf as per earlier described methodology 27 . Additionally, membrane feeding with 500 ng dsRNA per µl of artificial diet (Sucrose 30% solution, table sugar 50 mg and 1 ml yellow food dye (Ajanta Food Products Co., Solan, India) stretched between two layers of parafilm was tried in 2 nd and 3 rd instar, and female adult mealybug (Supplementary Information 4:Fig.…”
Section: Methodsmentioning
confidence: 99%
“…1(A)) followed by release of second instar mealybug nymphs on it and dipping the leaf petiole in nuclease free water for 48 h. Mealybug nymphs were collected (n = 25 in 3 biological replicates) from leaves 72 h post release for isolation of total RNA using Tri-Reagent ® (Sigma-Aldrich)) followed by cDNA synthesis (First strand cDNA synthesis kit, ThermoFisher Scientific) and relative estimation of mRNA transcripts of targeted genes using RT-qPCR as described earlier. dsRNA was extracted from leaf post petiole dip (12 h) to confirm its uptake in leaf as per earlier described methodology 27 . Additionally, membrane feeding with 500 ng dsRNA per µl of artificial diet (Sucrose 30% solution, table sugar 50 mg and 1 ml yellow food dye (Ajanta Food Products Co., Solan, India) stretched between two layers of parafilm was tried in 2 nd and 3 rd instar, and female adult mealybug (Supplementary Information 4:Fig.…”
Section: Methodsmentioning
confidence: 99%
“…The contigs with high expression levels but low homology to known reoviruses were then selected as candidate reovirus sequences. To further confirm all segments of reovirus genome, dsRNAs were isolated from the purified virus following the method described by Khabbazi et al [18]. dsRNAs were analyzed using 2% agarose gel electrophoresis and visualized in C-150 Gel Imager (Azure, Northlake, IL, USA).…”
Section: Reovirus Genome Sequencingmentioning
confidence: 99%