The musculoskeletal system, which includes bone, cartilage, tendon/ligament, and skeletal muscle, is becoming the targets for tissue engineering because of the high need for their repair and regeneration. Numerous factors would affect the use of musculoskeletal tissue engineering for tissue regeneration ranging from cells used for scaffold seeding to the manufacture and structures of materials. The essential function of the scaffolds is to convey growth factors as well as cells to the target site to aid the regeneration of the injury. Among the variety of biomaterials used in scaffold engineering, silk fibroin is recognized as an ideal material for its impressive cytocompatibility, slow biodegradability, and excellent mechanical properties. The current review describes the advances made in the fabrication of silk fibroin scaffolds with different forms such as films, particles, electrospun fibers, hydrogels, three-dimensional porous scaffolds, and their applications in the regeneration of musculoskeletal tissues.