The influence on the mass transfer in liquid-liquid extraction was investigated during droplet formation in a quiescent aqueous continuous phase for the two transition components, acetone and acetonitrile, in toluene. Both transition components have similar characteristics. However, an approximately eight times slower mass transfer of a droplet hanging on a capillary in relation to a rising droplet could be observed. The droplet formation time and the initial solute concentration are decisive for the mass transfer behaviour. A lower volumetric flow leads to slower droplet formation and a higher specific mass transfer area enhancing mass transfer, which is visualized via laser induced fluorescence (LIF). Additionally, as expected, higher initial solute concentrations promote Marangoni turbulences and thus mass transfer, which is measured via confocal Raman spectroscopy inside a fixed hanging droplet. K E Y W O R D S droplet formation, interfacial phenomena, Marangoni convection, mass transfer