Purpose
This study aims to reconstruct the frictional vibration signal from noise and characterize the running-in process by frictional vibration.
Design/methodology/approach
There is a strong correlation between tangential frictional vibration and normal frictional vibration. On this basis, a new frictional vibration reconstruction method combining cross-correlation analysis with ensemble empirical mode decomposition (EEMD) was proposed. Moreover, the concept of information entropy of friction vibration is introduced to characterize the running-in process.
Findings
Compared with the wavelet packet method, the tangential friction vibration and the normal friction vibration reconstructed by the method presented in this paper have a stronger correlation. More importantly, during the running-in process, the information entropy of friction vibration gradually decreases until the equilibrium point is reached, which is the same as the changing trend of friction coefficient, indicating that the information entropy of friction vibration can be used to characterize the running-in process.
Practical implications
The study reveals that the application EEMD method is an appropriate approach to reconstruct frictional vibration and the information entropy of friction vibration represents the running-in process. Based on these results, a condition monitoring system can be established to automatically evaluate the running-in state of mechanical parts.
Originality/value
The EEMD method was applied to reconstruct the frictional vibration. Furthermore, the information entropy of friction vibration was used to analysis the running-in process.