2007
DOI: 10.1016/j.compbiomed.2006.08.014
|View full text |Cite
|
Sign up to set email alerts
|

Extraction subject-specific motor imagery time–frequency patterns for single trial EEG classification

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
29
0
4

Year Published

2008
2008
2023
2023

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 42 publications
(34 citation statements)
references
References 11 publications
1
29
0
4
Order By: Relevance
“…The findings are consistent with other works [18], [19] in which the second dataset is exploited. So, in [18] where a timefrequency approach is investigated using six subjects (1, 2, 5, 6, 7, 9), for subject 1 and subject 9 are reported the classification rates 81.11% and 83.61%, respectively.…”
Section: Classifierssupporting
confidence: 83%
See 1 more Smart Citation
“…The findings are consistent with other works [18], [19] in which the second dataset is exploited. So, in [18] where a timefrequency approach is investigated using six subjects (1, 2, 5, 6, 7, 9), for subject 1 and subject 9 are reported the classification rates 81.11% and 83.61%, respectively.…”
Section: Classifierssupporting
confidence: 83%
“…While performing a mental activity as left/right hand movement or imagination changes appear in the sensorimotor area in the corresponding signal power of Mu (8)(9)(10)(11)(12) and Beta (12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30) rhythms.…”
Section: Introductionmentioning
confidence: 99%
“…With the newly selected basis, the performance of classifying the evaluation set is increased from 0.50 to 0.63. However this procedure is highly time consuming, and therefore, it could be performed by automatic best basis selection methods such as local discriminant bases [27].…”
Section: Resultsmentioning
confidence: 99%
“…Neste contexto, diversos trabalhos visam encontrar elementos espectrais, espaciais e temporais que melhor se adaptem a um indivíduo específico [12,18,19,24,25]. Neste trabalho, uma janela de tempo de tamanho t f de um ou dois segundos é extraída deX meio segundo após o início do período de Imagética Motora, resultando nos sinais Z (tal como ilustra a Figura 6).…”
Section: Extração E Seleção De Característicasunclassified
“…Neste contexto, trabalhos como os de [18], [12] e [19] buscam encontrar configurações espectrais que melhor representem a Imagética Motora para uma pessoa específica. Cabe ainda ressaltar que as variações que caracterizam as ERDs são ainda mais evidentes em regiões contralaterais ao movimento.…”
Section: Introductionunclassified