BackgroundThe current development of brain-machine interface technology is limited, among other factors, by concerns about the long-term stability of single- and multi-unit neural signals. In addition, the understanding of the relation between potentially more stable neural signals, such as local field potentials, and motor behavior is still in its early stages.Methodology/Principal FindingsWe tested the hypothesis that spatial correlation patterns of neural data can be used to decode movement target direction. In particular, we examined local field potentials (LFP), which are thought to be more stable over time than single unit activity (SUA). Using LFP recordings from chronically implanted electrodes in the dorsal premotor and primary motor cortex of non-human primates trained to make arm movements in different directions, we made the following observations: (i) it is possible to decode movement target direction with high fidelity from the spatial correlation patterns of neural activity in both primary motor (M1) and dorsal premotor cortex (PMd); (ii) the decoding accuracy of LFP was similar to the decoding accuracy obtained with the set of SUA recorded simultaneously; (iii) directional information varied with the LFP frequency sub-band, being greater in low (0.3–4 Hz) and high (48–200 Hz) frequency bands than in intermediate bands; (iv) the amount of directional information was similar in M1 and PMd; (v) reliable decoding was achieved well in advance of movement onset; and (vi) LFP were relatively stable over a period of one week.Conclusions/SignificanceThe results demonstrate that the spatial correlation patterns of LFP signals can be used to decode movement target direction. This finding suggests that parameters of movement, such as target direction, have a stable spatial distribution within primary motor and dorsal premotor cortex, which may be used for brain-machine interfaces.
We describe a new technique for the classification of motor imagery electroencephalogram (EEG) recordings in a brain computer interface (BCI) task. The technique is based on an adaptive time-frequency analysis of EEG signals computed using local discriminant bases (LDB) derived from local cosine packets (LCP). In an offline step, the EEG data obtained from the C(3)/C(4) electrode locations of the standard 10/20 system is adaptively segmented in time, over a non-dyadic grid by maximizing the probabilistic distances between expansion coefficients corresponding to left and right hand movement imagery. This is followed by a frequency domain clustering procedure in each adapted time segment to maximize the discrimination power of the resulting time-frequency features. Then, the most discriminant features from the resulting arbitrarily segmented time-frequency plane are sorted. A principal component analysis (PCA) step is applied to reduce the dimensionality of the feature space. This reduced feature set is finally fed to a linear discriminant for classification. The online step simply computes the reduced dimensionality features determined by the offline step and feeds them to the linear discriminant. We provide experimental data to show that the method can adapt to physio-anatomical differences, subject-specific and hemisphere-specific motor imagery patterns. The algorithm was applied to all nine subjects of the BCI Competition 2002. The classification performance of the proposed algorithm varied between 70% and 92.6% across subjects using just two electrodes. The average classification accuracy was 80.6%. For comparison, we also implemented an adaptive autoregressive model based classification procedure that achieved an average error rate of 76.3% on the same subjects, and higher error rates than the proposed approach on each individual subject.
Background Further research is required for evaluating the use of ADC histogram analysis in more advanced stages of cervical cancer treated with definitive chemoradiotherapy (CRT). Purpose To investigate the utility of apparent diffusion coefficient (ADC) histogram derived from diffusion-weighted magnetic resonance images in cervical cancer patients treated with definitive CRT. Material and Methods The clinical and radiological data of 50 patients with histologically proven cervical squamous cell carcinoma treated with definitive CRT were retrospectively analyzed. The impact of clinicopathological factors and ADC histogram parameters on prognostic factors and treatment outcomes was assessed. Results The mean and median ADC values for the cohort were 1.043 ± 0.135 × 10 mm/s and 1.018 × 10 mm/s (range, 0.787-1.443 × 10 mm/s). The mean ADC was significantly lower for patients with advanced stage (≥IIB) or lymph node metastasis compared with patients with stage
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.