Diamond burnishing is an effective solution to finish a surface. The purpose of the current work is to optimize parameter inputs, including the spindle speed (S), depth of penetration (D), feed rate (f), and diameter of tool-tip (DT) for improving the Vickers hardness (VH) and decreasing the average roughness (Ra) of a new diamond burnishing process. A set of burnishing experiments is executed under a new cooling lubrication system comprising the minimum quantity lubrication and double vortex tubes. The Bayesian regularized feed-forward neural network (BRFFNN) models of the performances are proposed in terms of the inputs. The criteria importance through the inter-criteria correlation (CRITIC) method and non-dominated sorting genetic algorithm based on the grid partitioning (NSGA-G) are applied to compute the weights of responses and find optimality. The optimal outcomes of the S, D, f, and DT were 370 rpm, 0.10 mm, 0.04 mm/rev, and 8 mm, respectively. The improvements in the Ra and VH were 40.7 % and 7.6 %, respectively, as compared to the original parameters. An effective approach combining the BRFFNN, CRITIC, and NSGA-G can be widely utilized to deal with complicated optimization problems. The optimizing results can be employed to enhance the surface properties of the burnished surface.