The pandemic recession has caused enormous disturbances in many industrialized countries. The massive disruption of the supply chain of production is affecting manufacturing companies operating in and around India. Particularly the medium-sized bus body building works have been reduced, due to its compound anomalies. The integrated view of the production facility priorities is not an easy task. Since it is difficult for available labour to conduct an entire project, the completion of a production process is delayed. But still, the dilemma remains as to how production managers can correctly interpret the priorities of the facility. Indeed, this is a problem missing from the previous study. Fortunately, in the current competitive environment, it is essentially needed. This study has been used Back Propagation Neural Network (BPNN) approach for predicting production facility priorities. The experimental results confirm the suitability of the model for predicting priorities. A real-world problem is taken into account in making use of the model output. In this sense, this total solution facilitates production managers in assessing and enhancing the production facilities. The findings emphasize the priority of "equipment effectiveness, labour scheduling and communication" in order to strengthen the post-pandemic production facility.
In a highly competitive manufacturing environment, it is critical to balance production time and cost simultaneously. Numerous attempts have been made to provide various solutions to strike a balance between these factors. However, more effort is still required to address these challenges in terms of labour productivity. This study proposes an integrated substitution and management improvement technique for enhancing the effectiveness of labour resources and equipment. Furthermore, in the context of time-cost optimization with optimal labour productivity, an extremal-micro genetic algorithm (Ex-μGA) model has been proposed. A real-world case from the labour-intensive medium-scale bus body fabricating industry is used to validate the proposed model performance. According to the results, the proposed model can optimize production time and cost by 34 % and 19 %, respectively, while maintaining optimal labour productivity. In addition, this study provides an alternative method for dealing with production parameter imbalances and assisting production managers in developing labour schedules more effectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.