Abstract. Infrastructure systems are inextricably tied to society by providing a variety of vital services. These systems play a fundamental role in reducing the vulnerability of communities and increasing their resilience to natural and human-induced hazards. While diverse definitions of the resilience engineering concept exist for the infrastructures, analysing resilience of these systems within cross sectoral and interdisciplinary perspectives remains limited and fragmented in research and practice. This review synthesizes and complements existing knowledge in designing resilient vital infrastructures with the aim to assist researchers and policy makers by identifying: (1) key conceptual tensions and challenges that arise when designing resilient infrastructure systems; (2) engineering and non-engineering based measures to enhance resilience of the vital infrastructures, including the best recent practices available; and (3) opportunities for future research in this field. Results from a systematic literature review combined with expert interviews are integrated into a conceptual framework in which infrastructures are defined as a conglomeration of interdependent social, ecological, and technical systems. Our results indicate that conceptual and practical challenges in designing resilient infrastructures continue to exist, hence these systems are still being built without taking resilience explicitly into account. A review of available measures and recent applications shows that these measures have not been widely applied in designing different systems. To advance our understanding of the resilience engineering concept for infrastructure systems, main pressing topics to address evolve around the: (i) integration of the combined social, ecological and technical resilience of infrastructure systems, focusing on cascading effects of failures and dependencies across these complex systems; and (ii) development of new technology to identify the factors that create different recovery characteristics for these socio-ecological-technical systems.