Abstract:Extreme ultraviolet spectra of the L-shell ions of highly charged yttrium (Y 26+ -Y 36+ ) were observed in the electron beam ion trap of the National Institute of Standards and Technology using a flat-field grazing-incidence spectrometer in the wavelength range of 4 nm-20 nm. The electron beam energy was systematically varied from 2.3 keV-6.0 keV to selectively produce different ionization stages. Fifty-nine spectral lines corresponding to ∆n = 0 transitions within the n = 2 and n = 3 shells have been identified using detailed collisional-radiative (CR) modeling of the non-Maxwellian plasma. The uncertainties of the wavelength determinations ranged between 0.0004 nm and 0.0020 nm. Li-like resonance lines, 2s-2p 1/2 and 2s-2p 3/2 , and the Na-like D lines, 3s-3p 1/2 and 3s-3p 3/2 , have been measured and compared with previous measurements and calculations. Forbidden magnetic dipole (M1) transitions were identified and analyzed for their potential applicability in plasma diagnostics using large-scale CR calculations including approximately 1.5 million transitions. Several line ratios were found to show strong dependence on electron density and, hence, may be implemented in the diagnostics of hot plasmas, in particular in fusion devices.