Liouville copulas introduced in [31] are asymmetric generalizations of the ubiquitous Archimedean copula class. They are the dependence structures of scale mixtures of Dirichlet distributions, also called Liouville distributions. In this paper, the limiting extreme-value attractors of Liouville copulas and of their survival counterparts are derived. The limiting max-stable models, termed here the scaled extremal Dirichlet, are new and encompass several existing classes of multivariate max-stable distributions, including the logistic, negative logistic and extremal Dirichlet. As shown herein, the stable tail dependence function and angular density of the scaled extremal Dirichlet model have a tractable form, which in turn leads to a simple de Haan representation. The latter is used to design efficient algorithms for unconditional simulation based on the work of [10] and to derive tractable formulas for maximum-likelihood inference. The scaled extremal Dirichlet model is illustrated on river flow data of the river Isar in southern Germany.