2010
DOI: 10.1590/s0104-14282010005000036
|View full text |Cite
|
Sign up to set email alerts
|

Extrusão de compósitos de PP com fibras curtas de coco: efeito da temperatura e agentes de acoplamento

Abstract: que os dois agentes de acoplamento melhoraram o módulo elástico, a tensão máxima e a resistência à absorção de água quando os materiais foram processados utilizando-se um perfil de temperaturas mais elevadas. A morfologia dos compósitos também ficou mais homogênea na presença dos agentes de acoplamento, especialmente naqueles processados na temperatura mais alta. Esses resultados indicam que a temperatura é uma variável fundamental no estabelecimento das interações envolvendo os processos de compatibilização. … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

1
12
0
3

Year Published

2013
2013
2021
2021

Publication Types

Select...
9
1

Relationship

0
10

Authors

Journals

citations
Cited by 28 publications
(16 citation statements)
references
References 25 publications
1
12
0
3
Order By: Relevance
“…In other words, the tenacity thereof in relation to other composites, including composite PP+GFPP is higher, they are less rigid, as shown by the modulus of elasticity in Figure 1-b, and absorb more impact energy. Similar behavior was encountered by GOMES et al [14] comparing banana fiber with glass fiber in high density polyethylene matrix; and, SANTOS et al [12] compared curauá fiber with glass fiber in Polyamide-6 matrix. The lower modulus of elasticity was obtained by natural fiber composites without additives PP+BS and PP+CC, being the lowest result obtained by the composite PP+BS attributed to poor adhesion of the babassu fibers to the polypropylene matrix, as can be observed in Figure 3-1b, from which the fiber could be easily removed.…”
Section: Resultssupporting
confidence: 72%
“…In other words, the tenacity thereof in relation to other composites, including composite PP+GFPP is higher, they are less rigid, as shown by the modulus of elasticity in Figure 1-b, and absorb more impact energy. Similar behavior was encountered by GOMES et al [14] comparing banana fiber with glass fiber in high density polyethylene matrix; and, SANTOS et al [12] compared curauá fiber with glass fiber in Polyamide-6 matrix. The lower modulus of elasticity was obtained by natural fiber composites without additives PP+BS and PP+CC, being the lowest result obtained by the composite PP+BS attributed to poor adhesion of the babassu fibers to the polypropylene matrix, as can be observed in Figure 3-1b, from which the fiber could be easily removed.…”
Section: Resultssupporting
confidence: 72%
“…The hydrophilic character makes them incompatible with hydrophobic polymers, like polyolefins, restricting the mechanical charge transfer between the polymeric matrix and the fibers. To overcome this drawback, some strategies to promote larger polymer-fiber contact can be applied, like fiber surface treatment, polymer modification or introduction of coupling agents [10,11] . For polyolefins, polymers grafted with maleic anhydride are commonly used as coupling agent [12] .…”
Section: Introductionmentioning
confidence: 99%
“…Nesse caso, faz-se uso de um terceiro componente no compósito, diminuindo a tensão interfacial e aumentando a adesão entre as fases da blenda polimérica: o agente compatibilizante. Há vários compostos que apresentam essa função, tais como copolímeros [19] , metacrilato de glicidila [20] , anidrido maleico, [21] entre outros [19][20][21] . No que tange aos métodos de compatibilização de blendas poliméricas, os mesmos podem ser classificados como mecânicos, físicos e químicos.…”
Section: -Desenvolvimento E Caracterização De Compósitos Poliméricos unclassified