Coleoptera, including the family Nitidulidae, are valuable for estimating long-term postmortem intervals in the late stage of body decomposition. This study showed that, under seven constant temperatures of 16, 19, 22, 25, 28, 31, and 34 °C, the developmental durations of Nitidula rufipes (Linnaeus, 1767) from oviposition to eclosion were 71.0 ± 4.4, 52.9 ± 4.1, 40.1 ± 3.4, 30.1 ± 2.1, 24.2 ± 2.0, 21.0 ±2.3, and 20.8 ± 2.4 days, respectively. The morphological indexes of body length, the widths of the head capsules, and the distance between the urogomphi of the larvae were measured in vivo. The regression model between larval body length and developmental durations was simulated for larval aging, and the head capsule width and the distance between the urogomphi at different instars were cluster-analyzed for instar discrimination. Based on the developmental durations, larval body length and thermal summation data were obtained, and the isomorphen diagram, isomegalen diagram, linear thermal summation models, and curvilinear Optim SSI models were established. The lower developmental threshold and thermal summation constant of N. rufipes evaluated by the linear thermal summation models were 9.65 ± 0.62 °C and 471.40 ± 25.46 degree days, respectively. The lower developmental thresholds, intrinsic optimum temperature, and upper lethal developmental threshold obtained by Optim SSI models were 10.12, 24.15, and 36.00 °C, respectively. The study of the immature stages of N. rufipes can provide preliminary basic developmental data for the estimation of minimum postmortem interval (PMImin). However, more extensive studies are needed on the effects of constant and fluctuating temperatures on the development of N. rufipes.