Aims: This study evaluates dialysis filtration and a range of PCR detection methods for identification and quantification of human adenoviruses in a range of environmental waters.
Methods and Results: Adenovirus was concentrated from large volumes (50–200 l) of environmental and potable water by hollow fibre microfiltration using commercial dialysis filters. By this method, an acceptable recovery of a seeded control bacteriophage MS2 from seawater (median 95·5%, range 36–98%, n = 5), stream water (median 84·7%, range 23–94%, n = 5) and storm water (median 59·5%, range 6·3–112%, n = 5) was achieved.
Adenovirus detection using integrated cell culture PCR (ICC‐PCR), direct PCR, nested PCR, real‐time quantitative PCR (qPCR) and adenovirus group F‐specific direct PCR was tested with PCR products sequenced for confirmation. Adenovirus was routinely detected from all water types by most methods, with ICC‐PCR more sensitive than direct‐nested PCR or qPCR. Group F adenovirus dominated in wastewater samples but was detected very infrequently in environmental waters.
Conclusions and Implications: Human adenoviruses (HAdv) proved relatively common in environmental and potable waters when assessed using an efficient concentration method and sensitive detection method. ICC‐PCR proved most sensitive, could be used semiquantitatively and demonstrated virus infectivity but was time consuming and expensive. qPCR provided quantitative results but was c. ten‐fold less sensitive than the best methods.