Hole transport layers (HTLs) have a significant role in the performance of organic and organic-inorganic solar cells. In this experiment, we have investigated HTLs for Pb-Sn binary perovskite solar cells (PSCs) to maximize the power conversion efficiency (PCE). CuI, PTAA, and PEDOT:PSS were chosen as HTLs to fabricate the MAPb0.75Sn0.25(I0.50Br0.50)3 perovskite solar cells. The solar cells were fabricated using an inverted p-i-n structure where we used ITO/HTL/Perovskite/C60/BCP/Al materials stack. For PSCs containing CuI, PTAA and PEDOT:PSS as HTL, we obtained the PCE of 3.81%, 3.11 and 6.5%, respectively, with unchanged other experimental condition. Also, PEDOT:PSS HTL-based solar cells deliver higher short circuit current of 16.37 mA/cm2 compared to CuI and PTAA HTL based binary perovskite solar cells. For these binary PSCs, PEDOT:PSS is the best choice to maximize power conversion efficiency.