The radio frequency (RF) reactive sputtering technique has been used to prepare Zn1−xNixO thin films with 0 ≤ x ≤ 0.08. Composite targets were obtained by mixing and pressing NiO and ZnO powders. Sapphire, quartz and glass were used as substrates. X-ray diffraction analysis of Ni-doped ZnO films indicates that all samples are crystalised in a hexagonal wurtzite structure with a preferred orientation along the (002) plane. Any secondary phase, corresponding to metallic nickel clusters or nickel oxides was not observed. High-resolution transmission electron microscopy (HR-TEM) image observed for Zn1−xNixO thin film shows a strong preferred orientation (texture) of crystalline columns in the direction perpendicular to the substrate surface. Different surface morphology was revealed in AFM images depending on the film composition and growth condition. Optical absorption spectra suggest the substitution of Zn2+ ions in the ZnO lattice by Ni2+ ions. The energy bandgap value was also found a complex dependence with an increase in Ni dopant concentration. In photoluminescence spectra, two main peaks were revealed, which are ascribed to near band gap emission and vacancy or defect states. Faraday rotation demonstrates its enhancement and growth of ferromagnetism with the increase in Ni content of Zn1−xNixO thin films at room temperature.