2016
DOI: 10.1088/0957-4484/27/40/405705
|View full text |Cite
|
Sign up to set email alerts
|

Fabrication and ferromagnetism of Si–SiGe/MnGe core–shell nanopillars

Abstract: Si-Si0.5Ge0.5/Mn0.08Ge0.92 core-shell nanopillar samples were fabricated on ordered Si nanopillar patterned substrates by molecular beam epitaxy at low temperatures. The magnetic properties of the samples are found to depend heavily on the growth temperature of the MnGe layer. The sample grown at a moderate temperature of 300 °C has the highest Curie temperature of 240 K as well as the strongest ferromagnetic signals. On the basis of the microstructural results, the ferromagnetic properties of the samples are … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
3
0

Year Published

2017
2017
2024
2024

Publication Types

Select...
6

Relationship

1
5

Authors

Journals

citations
Cited by 6 publications
(3 citation statements)
references
References 41 publications
0
3
0
Order By: Relevance
“…However, the self-assembly growth process of QDs requires high growth temperatures for atom migration. In the structure of Mn-doped Ge QDs, intermetallic compound phases between Mn and Ge can form, as we reported in previous papers [24,25]. Therefore, a proper growth temperature is important for the growth of QDs.…”
Section: Introductionmentioning
confidence: 74%
See 2 more Smart Citations
“…However, the self-assembly growth process of QDs requires high growth temperatures for atom migration. In the structure of Mn-doped Ge QDs, intermetallic compound phases between Mn and Ge can form, as we reported in previous papers [24,25]. Therefore, a proper growth temperature is important for the growth of QDs.…”
Section: Introductionmentioning
confidence: 74%
“…(1) When the growth temperature was low, the quality of the crystal in the QD was poor, which was amorphous or polycrystalline. In our previous study of Si-SiGe/MnGe core-shell nanopillars, the uniform distribution of the Mn dopant and the amorphous state of the MnGe layer were observed by High Resolution Transmission Electron Microscope (HRTEM) images and Energy Dispersive Spectrometer (EDS) mappings in MnGe layer grown at a low temperature [25]. Mn cannot reach the lattice substitution site in the lattice, and the energy band arrangement of the QD and the substrate is also distorted.…”
Section: Resultsmentioning
confidence: 99%
See 1 more Smart Citation