Large, freestanding membranes with remarkably high elastic modulus (>10 GPa) have been fabricated through the self-assembly of ligand-stabilized inorganic nanocrystals, even though these nanocrystals are connected only by soft organic ligands (e.g., dodecanethiol or DNA) that are not cross-linked or entangled. Recent developments in the synthesis of polymer-grafted nanocrystals have greatly expanded the library of accessible superlattice architectures, which allows superlattice mechanical behavior to be linked to specific structural features. Here, colloidal self-assembly is used to organize polystyrene-grafted Au nanocrystals at a fluid interface to form ordered solids with sub-10-nm periodic features. Thin-film buckling and nanoindentation are used to evaluate the mechanical behavior of polymer-grafted nanocrystal superlattices while exploring the role of polymer structural conformation, nanocrystal packing, and superlattice dimensions. Superlattices containing 3-20 vol % Au are found to have an elastic modulus of ∼6-19 GPa, and hardness of ∼120-170 MPa. We find that rapidly self-assembled superlattices have the highest elastic modulus, despite containing significant structural defects. Polymer extension, interdigitation, and grafting density are determined to be critical parameters that govern superlattice elastic and plastic deformation.elasticity | buckling | nanocomposite | thin film | nanoindentation N anocrystal superlattices are ordered arrays of ligand-stabilized colloidal nanocrystals with unique thermal (1, 2), optical (3, 4), and electronic (5, 6) properties due to the nanoscale dimensions and periodic spacing of the inorganic crystals. Nanocrystal superlattices also exhibit superior mechanical performance: superlattice elastic modulus has been shown to rival that of lightweight structural composites (>10 GPa), and superlattice membranes are capable of withstanding repeated indents to large displacements (7)(8)(9). This is all the more remarkable because mechanical cohesion in the superlattices is attributed to van der Waals interactions between ligands on neighboring nanocrystals (10, 11), which are weak enough that the ligands are liquid at room temperature when not attached to nanocrystals. Superlattice strength and stiffness can be further elevated to values that are unprecedented for polymer nanocomposites by cross-linking the organic ligands that coat the nanocrystals (12). The unusual combination of physical properties in nanocrystal superlattices presents intriguing opportunities to use these materials as mechanically actuated optoelectronic sensors (13,14), lightweight solar sails (15), and ultrathin barriers and coatings (16,17), but warrants the development of a thorough understanding of the mechanical behavior of nanocrystal superlattices. In particular, the roles of nanocrystal packing geometry, ligand structural conformation, and ligand-ligand and ligand-nanocrystal interactions must be clarified to design multifunctional, self-assembled polymer nanocomposites with improved mechanical ...