Cell polarity, the asymmetric distribution of proteins, organelles, and cytoskeleton, plays an important role in development, homeostasis, and disease. Understanding the mechanisms that govern cell polarity is critical for creating strategies to treat developmental defects, accelerate tissue regeneration, and hinder cancer progression. This review focuses on the role of cell polarity in a number of physiological processes, including asymmetric division, cell migration, immune response mediated by T lymphocytes, and cancer progression and metastasis, and highlights microfabrication techniques to systematically parse the role of microenvironmental cues in the regulation of cell polarity.