Monolithic stationary phases based on octadecyl acrylate for CEC using different initiating systems (UV irradiation, thermal, and chemical initiation) in the presence of lauroyl peroxide as initiator were synthesized. For each initiation mode, the influence of the porogenic solvent composition on both the morphological and electrochromatographic properties of the resulting monoliths was investigated. Under optimal conditions, excellent efficiencies for the photochemically and chemically polymerized monoliths (minimum plate heights of 6.9-10.7 and 6.5-12.6 μm, respectively) were achieved. Thermally initiated columns gave lower efficiency values, permeabilities, and longer analysis times compared to these initiating systems. The produced monolithic stationary phases were evaluated in terms of reproducibility and gave RSD values below 9.2, 10.6, and 9.8% for UV, thermally, and chemically initiated columns, respectively.