An acrylate monolith has been synthesized into a cyclic olefin copolymer microdevice for reversed-phase electrochromatography purposes. Microchannels, designed by hot embossing, were filled up with an acrylate monolith to serve as a hydrophobic stationary phase. A lauryl acrylate monolith was formulated to suit the hydrophobic material, by implementing 100% organic porogenic solvent. This new composition was tested in capillary prior to its transfer into the microfluidic device. Surface functionalization of the cyclic olefin copolymer surface was applied using UV-grafting technique to improve the covalent attachment of this monolith to the plastic walls of the microfluidic chip. The on-chip performances of this monolith were evaluated in detail for the reversed-phase electrochromatographic separation of polycyclic aromatic hydrocarbons, with plate heights reaching down to 10 microm when working at optimal velocity.
LC is one of the most powerful separation techniques as illustrated by its leading role in analytical sciences through both academic and industrial communities. Its implementation in microsystems appears to be crucial in the development of mu-Total Analysis System. If electrophoretic techniques have been widely used in miniaturized devices, LC has faced multiple challenges in the downsizing process. During the past 5 years, significant breakthroughs have been achieved in this research area, in both conception and use of LC on chip. This review emphasizes the development of novel stationary phases and their implementation in microchannels. Recent instrumental advances are also presented, highlighting the various driving forces (pressure, electrical field) that have been selected and their respective ranges of applications.
This paper shows the in situ synthesis of an hexyl acrylate monolith in PDMS microfluidic devices and its subsequent use as stationary phase for electrochromatography on chip. To overcome the ability of PDMS material to absorb organic monomers, surface modification of the enclosed channels was realized by UV-mediated graft polymerization. This grafting procedure is based on the preliminary adsorption of a photoinitiator onto the PDMS surface and polymerization of charged monomers. Next, hexyl acrylate monoliths were cast in situ using photopolymerization process. The chromatographic behavior of the monolithic column was confirmed by the successful separation of derivatized catecholamines in the PDMS device using a 30 mm effective separation length (100 microm x 100 microm section). Efficiencies reached up to 200,000 plates per meter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.