A loose nanofiltration (NF) membrane with excellent dye rejection and high permeation of inorganic salt is required to fractionate dye/salt mixture in dye wastewater treatment. In this study, we fabricated the loose NF membrane by using the electrospray interfacial polymerization (EIP) method. It is a novel and facile interfacial polymerization method, which controls the thickness of the poly(piperazine-amide) (PPA) layer in nanometers (1 nm/min) and changes cross-linking degree of PPA layer and pore size by varying the electrospray time; consequently, water permeance and dye/salt rejection ratio can be handled. The fabricated EIP membrane with an optimized fabrication condition (M30, electrospray time was 30 min) possessed excellent pure water permeance (20.2 LMH/bar), high dye rejection (e.g., 99.6% for congo red (CR)), and low salt rejection (e.g., 6.3% for NaCl). Moreover, the EIP membrane exhibited enhanced antifouling property than commercial NF membrane (NF90) with a high flux recovery rate (FRR) of 87.1% and low irreversible fouling (R ir ) of 12.9% after fouled by bovine serum albumin (BSA) due to its great smooth surface (average roughness (R a ) is 12.2 nm), hydrophilicity property, enhanced zeta potential, and low protein adsorption. The results indicate that the EIP loose NF membrane had a high potential for dye wastewater treatment.