Micro-expressions are short, involuntary facial expressions which reveal hidden emotions. Micro-expressions are important for understanding humans' deceitful behavior. Psychologists have been studying them since the 1960's. Currently the attention is elevated in both academic fields and in media. However, while general facial expression recognition (FER) has been intensively studied for years in computer vision, little research has been done in automatically analyzing microexpressions. The biggest obstacle to date has been the lack of a suitable database. In this paper we present a novel Spontaneous Micro-expression Database SMIC, which includes 164 microexpression video clips elicited from 16 participants. Microexpression detection and recognition performance are provided as baselines. SMIC provides sufficient source material for comprehensive testing of automatic systems for analyzing microexpressions, which has not been possible with any previously published database.
Abstract-Micro-expressions (MEs) are rapid, involuntary facial expressions which reveal emotions that people do not intend to show. Studying MEs is valuable as recognizing them has many important applications, particularly in forensic science and psychotherapy. However, analyzing spontaneous MEs is very challenging due to their short duration and low intensity. Automatic ME analysis includes two tasks: ME spotting and ME recognition. For ME spotting, previous studies have focused on posed rather than spontaneous videos. For ME recognition, the performance of previous studies is low. To address these challenges, we make the following contributions: (i) We propose the first method for spotting spontaneous MEs in long videos (by exploiting feature difference contrast). This method is training free and works on arbitrary unseen videos. (ii) We present an advanced ME recognition framework, which outperforms previous work by a large margin on two challenging spontaneous ME databases (SMIC and CASMEII). (iii) We propose the first automatic ME analysis system (MESR), which can spot and recognize MEs from spontaneous video data. Finally, we show our method outperforms humans in the ME recognition task by a large margin, and achieves comparable performance to humans at the very challenging task of spotting and then recognizing spontaneous MEs.
Recently, there are increasing interests in inferring mirco-expression from facial image sequences. For microexpression recognition, feature extraction is an important critical issue. In this paper, we proposes a novel framework based on a new spatiotemporal facial representation to analyze micro-expressions with subtle facial movement. Firstly, an integral projection method based on difference images is utilized for obtaining horizontal and vertical projection, which can preserve the shape attributes of facial images and increase the discrimination for micro-expressions. Furthermore, we employ the local binary pattern operators to extract the appearance and motion features on horizontal and vertical projections. Intensive experiments are conducted on three available published micro-expression databases for evaluating the performance of the method. Experimental results demonstrate that the new spatiotemporal descriptor can achieve promising performance in micro-expression recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.