Penetration lengths in the millimetre range make hard x-rays above 60 keV a well-suited tool for non-invasive probing of small specimens buried deep inside their surroundings, and enable studying individual components inside assembled, complex devices (solar cells, batteries etc.). The real-space resolution of typical imaging modalities like fluorescence mapping, scanning SAXS and WAXS depend on the available beam size. Although routine in the 5-25 keV regime [1-4], spot sizes below 50 nm are very challenging at x-ray energies above 50 keV: Compound refractive lenses lack in refractive power, the multilayer thickness of coated mirrors is bounded by interfacial diffusion, and lithographic Fresnel Zone Plates loose their efficiency in the two-digit keV regime. Multilayer Laue Lenses and Multilayer Zone Plates (MZP) are promising candidates for high-keV focusing to small spot sizes; compared to Fresnel Zone Plates, the aspect ratio comparing outermost layer width (~focal spot size) to optical thickness (efficiency) is virtually unlimited by the fabrication. Using Pulsed Laser Deposition on a rotating wire (several millimetre long), we have fabricated an MZP with 10 nm outermost zone widths and optical thickness of 30 µm (optimum phase shift at 60 keV), yielding an unprecedented ultra-high aspect ratio of 1:3000 (outermost zone width compared to optical thickness). We present experimental results obtained at ESRF's high energy beamline ID31, where for the first time scanning experiments with real-space resolutions below 50 nm even at x-ray energies ranging from 60 keV to above 100 keV have been achieved.