Boronate‐affinity adsorbents have been regarded as favorable extraction adsorbents for the pretreatment of cis‐diol‐containing biomolecules owning to their specific selectivity, but most of them have low adsorption capacity and a tedious synthesis methods. In this study, a new boronate‐affinity material (PGMA@FPBA) with high adsorption capacity was synthesized via a “one‐pot” method based on a low‐cost commercial support. The PGMA@FPBA was characterized by Fourier transform infrared spectroscopy (FT‐IR), X‐ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), and nitrogen adsorption/desorption measurements. The as‐prepared adsorbent showed good selectivity, high adsorption capacity (448 μmol/g for catechol), and fast adsorption equilibration (1 min) for cis‐diol‐containing biomolecules. Subsequently, as an example for application, the obtained PGMA@FPBA was used as a dispersive solid‐phase extraction (d‐SPE) adsorbent for enrichment of quercetin in red wine. The results indicated that the facile‐prepared boronate‐affinity adsorbent has great potential application for separation and enrichment of cis‐diol‐containing biomolecules in complex samples.