Collaboration is an essential skill for modern ecologists because it brings together diverse expertise, viewpoints, and study systems. The Lotic Intersite Nitrogen eXperiments (LINX I and II), a 17-y research endeavor involving scores of early-to late-career stream ecologists, is an example of the benefits, challenges, and approaches of successful collaborative research in ecology. The scientific success of LINX reflected tangible attributes including clear scientific goals (hypothesis-driven research), coordinated research methods, a team of cooperative scientists, excellent leadership, extensive communication, and a philosophy of respect for input from all collaborators. Intangible aspects of the collaboration included camaraderie and strong team chemistry. LINX further benefited from being part of a discipline in which collaboration is a tradition, clear data-sharing and authorship guidelines, an approach that melded field experiments and modeling, and a shared collaborative goal in the form of a universal commitment to see the project and resulting data products through to completion. Key words: collaboration, LINX, ecology, science, stream ecology, nitrogen dynamics This contribution is dedicated to the memory of Patrick J. Mulholland ( Fig. 1) in recognition of the leadership, mentoring, and friendship he provided to the LINX group and the collaborative spirit he championed.The grand challenges in ecology and environmental science increasingly require interdisciplinary teams to perform complex, coordinated research across diverse locations. Here we share our insights from creating and sustaining 2 collaborative projects over 17 y: the Lotic Intersite Nitrogen eXperiments (LINX I and II, funded by the US National Science Foundation [NSF]). Authors of this paper have been involved in many other collaborative projects. Here, we address why these 2 collaborations were particularly successful.Numerous authors have described how collaborative groups are more successful than individuals ( The LINX collaboration joins many other excellent examples of successful collaboration, in disciplines ranging from mathematics to geography. Mathematicians and climatologists worked together to model ice movement and changes in ocean levels (Katsman et al. 2011). Relationships between land-surface and subsurface variability were quantified in permafrost environments using Light Detection and Ranging (LiDAR) technology and a surface geo-*The PERSPECTIVES section of the journal is for the expression of new ideas, points of view, and comments on topics of interest to aquatic scientists. The editorial board invites new and original papers as well as comments on items already published in Freshwater Science. Format and style may be less formal than conventional research papers; massive data sets are not appropriate. Speculation is welcome if it is likely to stimulate worthwhile discussion. Alternative points of view should be instructive rather than merely contradictory or argumentative. All submissions will receive the us...