Among alternative anode materials for high-temperature fuel cells, the complex ceramic oxide La0,75Sr0,25Mn0,5Cr0,5O3 (LSCM) has recently shown good catalytic activity regarding fuel oxidation and sufficient stability in reductive environments at relatively low steam-to-carbon ratios. However, the electrical and ionic conductivities of LSCM are lower compared to some other perovskite materials. One of the possibilities to improve the conductivity of LSCM is in its composition variations, i.e., altering the Sr-content, doping on the A-site of the perovskite with other ions (Ba, Ca and Mg), and varying the Mn-to-Cr ratio on the B-site of the perovskite. In this paper, systems with the general formula La0.75SrxA0.25-xCr0.5Mn0.5O3 (A = Ba, Ca, Mg, x varies between 0 and 0.25) are described. Within the investigated system, prepared materials after synthesis contain the perovskite structure as a main crystallographic phase with relatively low additions of secondary phases. Any secondary phases are undesired, because they may substantially influence the electrical properties of the final materials. In samples with relatively high Sr-additions, a secondary Sr-rich phase Sr2CrO4 is also identified. Ca-doping may result in traces of CaCr2O4 phase in as-synthesized samples, while Ba-doping may lead to BaCrO4 or BaCO3 phases with higher Ba-additions. The quantity of the secondary phases may be controlled by calcination program or sintering conditions. Secondary phases, which may form additional grains or liquid phase, also influence the development of microstructures during sintering. Within the investigated compositions, the most promising materials are La0.75SrxCa0.25-xCr0.5Mn0.5O3 (x = 0.05-0.15), because they exhibit single-phase microstructure with fine grains after sintering at 1200°C. Materials with Ba-or Mg-additions form precipitates of secondary phases at 1200°C, which also remain present after sintering at higher temperatures. Keywords: combustion synthesis, perovskite, thermal analysis, x-ray powder diffraction, quantitative microstructure analysis La0,75Sr0,25Mn0,5Cr0,5O3 (LSCM) je med alternativnimi anodnimi materiali za visokotemperaturne gorivne celice pokazal dobro katalitsko aktivnost za oksidacijo goriva ter zadovoljivo stabilnost v reduktivnih okoljih z relativno nizkim razmerjem med vodno paro in ogljikom. Vendar pa ima LSCM v primerjavi z nekaterimi drugimi perovskiti nekoliko ni`jo elektri~no in ionsko prevodnost. Ena od mo`nosti za izbolj{anje njegove prevodnosti je v variacijah sestave, npr. sprememba koncentracije Sr, dopiranje na A mestu v perovskitu z drugimi ioni (Ba, Ca in Mg), variiranje razmerja med Mn in Cr na B mestu v perovskitu. V prispevku obravnavamo sistem s splo{no formulo La0.75SrxA0.25-xCr0.5Mn0.5O3 (A = Ba, Ca, Mg, x variira med 0 in 0,25). Materiali v preiskovanem sistemu po sintezi kot glavno fazo vsebujejo perovskit z relativno nizko vsebnostjo sekundarnih faz. Kakr{nekoli sekundarne faze so neza`elene, ker lahko bistveno vplivajo na elektri~ne lastnosti kon~nih materialov. V ...