This study aims to characterize Belgian clays in order to evaluate their use for manufacture of compressed earth blocks (CEB). Nineteen Belgian clay deposits were sampled in 56 sites and 135 samples were collected and analyzed. The analyses focus on the determination of particle size, plasticity, nature and mineralogy as the main characteristics for assessing the suitability of the raw clays to make CEB. These analyses allow for classifying the sampled clay deposits in three categories: clays that can be used unchanged to make CEB (2 clay deposits), clays that are suitable for the manufacture of CEB but require addition of sand and gravel particles (13 clay deposits) and clays that are suitable for the manufacture of CEB if they are mixed with other raw clays (4 clay deposits). In order to verify the use of these clays, five of them served as a model for making CEB. The strength of these bricks was evaluated by testing for compressive strength and abrasion resistance. The results of these tests confirm the suitability or not of the sampled clays for the manufacture of CEB.
Three clayey materials named MY3, KK and KG originating from the Foumban region (west Cameroon) were analysed to determine their granulometry, plasticity, major-element chemistry and mineralogy. Dilatometric and ceramic behaviour were also investigated. Clays were shaped by uniaxial pressing in a steel mould. Shaped samples were heated at 1300, 1400 and 1500°C. The end products were characterized in terms of their density, porosity and compressive strength. Raw materials differ in terms of their mineralogical composition, grain-size distribution, Al2O3 content and the nature and abundance of impurities inducing specific thermal behaviour during dilatometric analysis and sintering tests. The final material properties may be related to the main features of the raw materials used.
Particle size analysis, Atterberg limits, X-ray diffraction, X-ray fluorescence and firing tests were used to determine physico-chemical, mineralogical and technological characteristics of residual lateritic (K1M, Ma2) and alluvial (KB3, KG3) clays from Foumban (West-Cameroon). For technological properties, the samples were pressed and fired over a temperature range of 900˚C -1200˚C to determine the open porosity, linear shrinkage, bulk density and compressive strength. Kaolinite (31% -65%) and quartz (35% -50%) are dominant in Foumban clays with accessory K-feldspar, plagioclase, illite, smectite, rutile, and goethite. But their proportion changes from one sample to another, having a significant effect on the behaviour of the clay materials: highest proportion of quartz (50%) in sample K1M; relative high feldspars (20%) and illite contents (10%) in KB3 and MA2; high smectite content in KG3 (up to 20%). Chemical analyses indicate high SiO 2 (49% -77%) and low Al 2 O 3 (14% -23%) contents in the four samples, with comparatively low contents of iron oxides (4% -7% in samples KB3 and KG3, 2.5% in MA2 and ~1.5% in sample K1M). The particle size distribution of the alluvial clays (KG3 and KB3) differs considerably: 7% to 37% of clay fraction, 20% to 78% of silt, and 15% to 58% of sand, while residual clays (K1M and MA2) present on average 12% of clay, 51% of silt and 37% of sand. Two raw clays (KB3 and MA2) can be used for bricks/tiles production without beneficiation or addition. K1M requires some flux addition to decrease the sintering temperature while KG3 presents poor properties due to the combined occurrence of smectite and a high clayey fraction (37%). Such mineralogical composition is responsible for very high plasticity (PI: 50), high shrinkage (LS: 5% -16%), low porosity (OP: up to 21%) and high flexural strength
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.